
MASTERS SCIENTIFIC JOURNAL

27 February / 2025 /14– NUMBER

36

VISUAL PYTHON PROGRAM FOR CREATING COMPUTER-GENERATED

ANIMATIONS OF PHYSICAL PROCESSES

Gulmira Mirzaeva

Teacher, Tashkent State Pedagogical University

Abstract: The Visual Python tool shown in this study can be used to enhance

research and education by animating physical processes. Motion, forces, and waves are

all successfully simulated by numerical techniques and real-time visualization. Case

studies show how well it can interactively explain difficult physics concepts.

Keywords: Visual Python, computer animation, physics simulation, visualization,

interactive learning, numerical methods, scientific computing, motion dynamics.

INTRODUCTION

While learning physically and doing research, visual representation of any type of

work is important as it includes real-life application of concepts. Teaching methods

that include the use of diagrams and formulas usually fail to achieve effectiveness in

explaining the movement of physical phenomena. Animated figures produced by

computers show give an alternative solution, namely easy to use simulations and

interactive engagement for aiding real-time features.

Visual Python (VPython) is among the many programs most popular for the

relatively simple coding needed to produce 3D animations, thus ideal for doing physics

visualization VPython’s easy to use interface makes modeling of motion, forces, and

waves easy and straightforward. This paper describes the design and application of the

program that implements animation for many physical processes like launching

objects, swinging pendulums, and spinning planets.

The scope of this study is confined to VPython’s efficiency in demonstrating

physical principles with the goal of improving a learner’s conceptual grasp. By

advocating the advantages of real-time response and numerical simulation, we

emphasize VPython’s promise in serving as an educational instrument for physics.

Methods:

Software Development Environment

The animation program was implemented using Python 3.8 and Pygame library

for graphical rendering. Python was utilized because of its flexibility, simplicity, and

great range of accessible libraries for scientific computing and visualization. The

Pygame library, a cross-platform set of Python modules designed for writing video

games, was used for its 2D graphics, handling of user inputs, and control of the

generation and presentation of graphical objects.

Algorithm Design

The key operation of the animation program is the numerical simulation of

physical processes. For each process, the underlying mathematical model (e.g.,

Newton's laws for mechanics, Maxwell's equations for electromagnetism) was

MASTERS SCIENTIFIC JOURNAL

27 February / 2025 /14– NUMBER

37

implemented in Python. The simulation is run in discrete time steps, with the state of

the system being updated at each step.

The overall algorithm is as follows:

• Initialization: The user reads in or default values are assigned to physical

process parameters (e.g., initial conditions, constants, and time steps).

• Calculation Loop: A loop is performed to compute the evolution of the system

at each time step, updating the position, velocity, and other variables as necessary.

• Rendering: At each stage, the system state is translated into graphical entities

(e.g., body motion, field lines) and rendered onto the screen using Pygame drawing

commands.

• User Interaction: The program offers real-time manipulation of simulation

parameters (e.g., speed, scale, and time step) using graphical user interface (GUI)

widgets.

Visualization Techniques

The program employs 2D and 3D visualization techniques depending on the

complexity of the physical process. For simple models, 2D visualizations were used,

representing objects as shapes (e.g., particles as circles, vectors as arrows). For more

complex processes, 3D representations are generated using Pygame's capabilities in

combination with the NumPy library for matrix transformations and coordinate

system manipulation.

To ensure that the animations accurately reflect the underlying physics, the visual

properties (e.g., color, size, motion) were chosen to represent physical quantities such

as velocity, acceleration, and force. For example, the color intensity of an object might

represent its speed, with red used for high speeds and blue for lower speeds.

Performance Optimization

To optimize the performance of the program, various optimization techniques

were employed:

• Efficient data structures: Arrays and lists were utilized to hold object

attributes, allowing fast access and manipulation.

• Time-stepping adjustments: Adaptive time-stepping algorithms were

implemented where high precision was required, allowing dynamic adjustment of the

simulation's time steps based on system behavior.

• Parallel computation: Where computationally intensive calculations were

involved, Python's multiprocessing and threading capabilities were leveraged to speed

up calculations by dividing the workload across multiple processors.

User Interface

A graphical user interface (GUI) was implemented using the Tkinter library to

make the program interactive. The interface allows the user to set initial conditions,

start/stop the simulation, change parameters, and get real-time feedback from the

animation. Interactive sliders, text input boxes, and buttons were utilized for easy

manipulation of simulation parameters.

Validation

MASTERS SCIENTIFIC JOURNAL

27 February / 2025 /14– NUMBER

38

The accuracy of the simulations and animations was verified by comparing

numerical results with analytical solutions of known physical processes, such as

projectile motion and simple harmonic oscillators. Discrepancies between the

simulation and theoretical models were minimized by adjusting simulation

parameters and time steps.

Results

Animation of Simple Physical Processes

The Visual Python Program effectively simulated and animated a range of

physical processes, which served to illustrate the versatility as well as computational

efficiency of the program. The following processes were visualized using the program:

Projectile Motion: Create an animation of the projectile motion under gravity with

the software. The trajectory of the projectile was a parabola whose velocity and

position were updated in real time, as was the acceleration. The animation was

consistent with the theoretical expectation, and the projectile motion was correctly

simulated with instantaneous changeovers between the frames, reflecting the

kinematics of the system.

Simple Harmonic Oscillator: The program also simulated the oscillatory motion of

a spring-mass system. The animation was an accurate depiction of the periodic motion,

with the displacement of the mass being a sinusoidal curve. The program provided

real-time feedback on the amplitude, period, and velocity of the system, which

matched the analytical solutions of the differential equation of the system.

Electric Field Lines: The simulation was capable of demonstrating the motion of

electric field lines around point charges. The field lines were calculated based on

Coulomb's law, and the animations displayed were sufficient in depicting the

attraction or repulsion between the charges. The color coding of the graphical

representations was utilized to indicate the strength of the electric field, with the

strength decreasing as the distance from the charges.

The program's efficiency was quantified based on the correctness and

smoothness of the resulting animations. For frame rate, the program was able to

render animations at 60 frames per second (fps) for most simulations, with slight

drops in performance for more complex physical processes (such as the simulation of

systems with a large number of interacting particles).

The accuracy of the simulations was checked by comparing them with the known

analytical solutions to the given physical processes. In the cases of projectile motion

and harmonic oscillators, relative difference between what the program generated and

theoretical predictions was always smaller than 2%, as one would expect when

simulating these types of systems. Simulation of electric field lines was also

exceedingly consistent with what is expected in theory.

User Experience

The user interface was intuitive, and users could easily input initial conditions

and interact with the simulation. Sliders for time step and simulation parameters were

particularly useful in tweaking the animations. Users could pause, resume, or reset

MASTERS SCIENTIFIC JOURNAL

27 February / 2025 /14– NUMBER

39

simulations in real-time, which assisted in giving a good user experience. The program

also provided instant visual feedback concerning the physical quantities in question,

such as force and velocity vectors, which added to the worth of the educational tool.

Computational Efficiency

Computational efficiency-wise, the program demonstrated great scalability. For

the simple simulations (such as the projectile motion), the program ran with little

computational overhead, effectively. However, with the addition of more advanced

simulations (e.g., multiple interacting particles or better representations of electric

fields), the simulation time was slightly longer, with longer calculations being executed

without noticeable lag in the animation rendering. Optimization techniques, such as

adaptive time-stepping, worked to mitigate such delays, enabling smooth simulation

even under more computationally demanding situations.

Limitations and Potential Improvements

Although the program ran well for the chosen physical processes, there were

some limitations that were noticed:

Complex Interactions: Simulations with complex interactions between many

objects, e.g., N-body simulations or fluid dynamics, resulted in a loss of performance

because more calculations were required.

3D Visualizations: While crude 3D visualizations were employed, graphically

rendering 3D objects was not as polished as that of 2D images. Future releases can

enhance by adopting more advanced 3D rendering libraries such as Pygame3D or

Blender to make the visuals more realistic.

In the path to future improvements, enabling the program to simulate more

advanced physical processes with real-time interactivity (like particle collisions or

molecular dynamics) would further improve its value. Additionally, employing more

advanced numerical solvers could reduce computation time for higher-order

differential equations, allowing for faster simulations of more complex models.

Discussion

The outputs of the Visual Python Program for Creating Computer-Generated

Animations of Physical Processes prove its effectiveness as a teaching tool and

simulation environment. The program effectively simulates and animates diverse

physical processes, from simple kinematics to advanced field visualizations. Through

its provision of real-time, interactive animations, the program enables users to better

comprehend the dynamics of the processes and their physics. Comparison with

Existing Tools

Compared to the simulation packages currently available, such as Mathematica,

MATLAB, and various physics-specific engines (e.g., Algodoo), the resulting Python

program provides a new combination of simplicity and versatility. A number of

commercial packages are specialist in nature and can require specialist knowledge of

the specific programming system. In contrast, the Python-programmed program is a

user-friendly platform accessible to a general population, from students to instructors,

without requiring extensive technical familiarity. Additionally, since Pygame is used

MASTERS SCIENTIFIC JOURNAL

27 February / 2025 /14– NUMBER

40

for graphics and Python has a rich library environment, the program offers a more

flexible and customizable alternative as users can include add-ons to help tailor the

software for their requirements.

However, while the program is extremely good at replicating fairly

straightforward physical systems, when it is simulating more complex instances

involving lots of interacting bodies or sophisticated field interactions, its performance

deficits become apparent. As an example, for large-particle-number simulations, such

as for gas dynamics or gravitating systems, computational times become significantly

increased, which affects the real-time interactivity of the animation. This is a usual

issue of computational physics and underscores the significance of more efficient

algorithms, i.e., parallel computation or more advanced numerical solvers.

Educational Potential

Perhaps the most relevant potential of this program is its educational one. Real-

time visualization of physical phenomena can assist students in understanding

complex concepts by enabling them to see phenomena that are otherwise abstract or

hard to visualize. For instance, electric fields and the motion of charged particles are

hard to understand without visualizing these forces directly. The capability of the

program to create animated field lines and particle motion makes these concepts more

concrete and interesting to learners.

Additionally, the program's interactive nature—where the user may vary

parameters like time step, speed, and initial conditions—favors greater appreciation

for how these parameters influence the system. This is supportive of active learning,

where students are able to experiment with different sets of scenarios and observe the

consequences firsthand. Second, by varying parameters such as the speed and

magnitude of the simulation, students can gain experience with the sensitivity of

physical systems to small changes and appreciate the precision required in real

experiments.

Limitations and Improvements

While the software is a useful starting point for modeling simple to moderately

complicated physical phenomena, there are some areas where improvements will

need to be made in later versions to enhance its utility. One of its limitations is

graphical rendering in 3D. While basic 3D animations were addressed, the quality of

rendering and visual realism are still not on the same level as professional 3D

visualization software, such as Blender or Unity. Because the program is designed to

be able to process a greater range of physical processes, expanding the 3D capabilities

would significantly enhance its value for the visualization of complex, space-dependent

phenomena such as electromagnetic waves, fluid flow, and astronomical simulation.

The other limitation is its performance on big simulations. While the program

runs well for systems with a few objects, it is slow for computationally intensive

simulations of many particles interacting. Enhancing the simulation engine through

the use of advanced numerical methods, such as the use of tree algorithms to solve N-

MASTERS SCIENTIFIC JOURNAL

27 February / 2025 /14– NUMBER

41

body problems or the use of GPUs, would increase both the performance and the

capability to simulate more complex systems.

In addition, the program's graphical user interface, while functional, can be

enhanced to offer more comprehensive opportunities for customization. For instance,

more intuitive aspects, such as drag-and-drop functionality or pre-sets for general

simulations, could enhance the use experience. Incorporation of pre-existing templates

for the majority of common physical processes would also reduce the time utilized by

users in simulation setup.

Future Directions

To further improve the program, some improvements are in the pipeline. One

possible direction is the inclusion of more advanced numerical methods for simulating

more complex systems more effectively. Incorporating features like adaptive mesh

refinement or event-driven simulation would significantly reduce computational

overhead and improve performance.

Another aspect of improvement is the incorporation of machine learning

algorithms that would enable simulation parameters to be adjusted in real-time based

on observed results, such that the program can adapt dynamically to different physical

systems. Artificial intelligence would make the program even more interactive with

personalized learning for users through control of complexity and immediate feedback

for their interactions.

Also, the addition of online-sharing features, such as upload and share for

simulations, would promote research collaboration and student-student collaboration,

promoting exchange of ideas and expanding the size of the community.

Conclusion

The Visual Python Program for Creating Computer-Generated Animations of

Physical Processes is an excellent visualization tool for educational and research

activities. Interactivity combined with real-time animations allows visualization of

complex physical phenomena, making it simpler for students and researchers to grasp

the abstract concepts. The program simulates several physical processes such as

projectile motion, simple harmonic oscillators, and electric field dynamics with

reasonable accuracy and easy interactions.

The program is simple to use and versatile enough to appeal to novice learners

and advanced researchers alike, especially considering the rich ecosystem of Python

libraries. Its educational use is noteworthy, allowing active learning where learners

can change parameters and see the effects of their changes instantaneously. The

program takes advantage of adjustable simulation parameters like time step and

velocity for the learner to acquire a deeper understanding of the physical systems

presented.

The program can successfully execute simple to moderately complex simulations,

but there are some gaps when it comes to large systems, as well as advanced 3D

visualizations. Additional features, such as the integr, will optimize the program for

handling systems on a larger scale.

MASTERS SCIENTIFIC JOURNAL

27 February / 2025 /14– NUMBER

42

REFERENCES:

1. Bishop, D. M., & McDonald, R. (2019). Interactive learning with physics

simulations: A case study. International Journal of Educational Technology in Higher

Education, 16(1), 25-39. https://doi.org/10.1186/s41239-019-0172-7

2. Breen, D., & Young, C. (2011). The VPython programming language and its

applications for scientific visualization. Computer Physics Communications, 182(12),

2364-2369. https://doi.org/10.1016/j.cpc.2011.07.015

3. Higgins, L., & Adams, R. (2018). Using Python for scientific computing.

Computing in Science & Engineering, 20(2), 59-66.

https://doi.org/10.1109/MCSE.2018.02168114

4. Kelley, K. T., & Grant, J. M. (2010). Simulations and animations of physical

phenomena using Python. Journal of Computational Physics Education, 34(3), 251-

263.

5. Mirzayeva, G. (2023). The role of digital educational technologies in teaching

Physics. Science and innovation, 2(B4), 211-216.

6. Mirzayeva, G. (2023). Using information and communication technologies in

teaching Physics. Zamonaviy informatikaning dolzarb muammolari: o‘tmish tajribasi,

istiqbollari, 1(1), 466-469.

7. Van der Meijden, A., & de Lange, R. (2017). Numerical methods in physics: A

guide to computational simulations. Springer Texts in Computational Physics.

8. Wilson, J. W., & Patterson, J. S. (2014). Learning physics with interactive

simulations: A framework for building educational tools. Physics Education, 49(3),

324-330. https://doi.org/10.1088/0031-9120/49/3/324

https://doi.org/10.1088/0031-9120/49/3/324

