TRANSFER LEARNING USULLARIDAN FOYDALANIB MODEL NATIJALARINI YAXSHILASH
Keywords:
Transfer o‘rganish, mashinani o‘rganish, induktiv o‘rganish, transduktiv o‘rganish, nazoratsiz o‘rganish, model natijalari, chuqur o‘rganish.Abstract
Transfer learning (TL) — bu mashinani o‘rganish (ML) usulidir, bunda oldindan o‘rgatilgan model yangi vazifani bajarish uchun qayta o‘qitiladi. Bu usul ko‘plab sohalarda modellarning samaradorligini oshirishda, vaqt va resurslarni tejashda muhim ahamiyat kasb etadi. Transfer learning texnikalari, xususan, induktiv va transduktiv uzatish, nazoratsiz o‘rganish kabi usullar yordamida modellarning yuqori ishonchliligi va tezligi oshiriladi. Ushbu maqolada transfer learning usullarining qo‘llanilishi, ularning mashinani o‘rganish natijalariga qanday ta'sir qilishini tahlil qilib, bu usullarning qanday foydalari borligi va qaysi sohalarda ulardan foydalanishning afzalliklari ko‘rsatiladi.
References
1. Yosinski, J., Clune, J., Nguyen, A., Fuchs, T., & Lipson, H. (2014). How transferable are features in deep neural networks? Neural Information Processing Systems (NIPS).
2. Pan, S. J., & Yang, Q. (2010). A survey on transfer learning. IEEE Transactions on Knowledge and Data Engineering, 22(10), 1345-1359.
3. Ruder, S. (2017). An overview of transfer learning. arXiv preprint arXiv:1706.04422.
4. Zhang, X., & Yang, Q. (2021). A comprehensive survey on transfer learning. Journal of Artificial Intelligence Research, 70, 153-186.
5. https://medium.com/georgian-impact-blog/transfer-learning-part-1-ed0c174ad6e7