ANALYSIS OF THE NONLINEAR DIFFUSION SYSTEM WITH A SOURCE
Keywords:
blow-up; nonlinear boundary condition; critical exponents; nonlinear diffusion system; asymptotic.Abstract
: In this paper, we consider the solvability and unsolvability of solutions of a nonlinear diffusion system with a source and nonlinear boundary conditions in the case of slow diffusion. Establishing numerous self-similar super-solutions and sub-solutions for the nonlinear diffusion system, it was possible to derive the critical global existence curve and the Fujita-type critical exponent. It is shown that specific numerical characteristics of the nonlinear diffusion system bounded by nonlinear boundary conditions may not exist.
References
1. Aripov M. The fujita and secondary type critical exponents in nonlinear parabolic equations and systems. In Differential Equations and Dynamical Systems: 2 USUZCAMP, Urgench, Uzbekistan, August 8–12, 2017, pp. 9-23. Springer International Publishing, 2018.
2. Bobokandov M, Aripov M., and Uralov N. Analysis of Double Nonlinear Parabolic Crosswise-Diffusion Systems with Time-Dependent Nonlinearity Absorption. ICTEA: International Conference on Thermal Engineering, vol. 1, no. 1, 2024.
3. Zhaoyin, X., Chunlai, M. and Yulan, W., Critical curve of the non-Newtonian polytropic filtration equations coupled via nonlinear boundary flux. Rocky mountain journal of mathematics, 2009, No. 2, Vol. 39.
4. Samarskii, A.A., Galaktionov, V.A., Kurdyumov, S.P., Mikhailov, A.P. Blow-up in Quasilinear Parabolic Equations, Berlin, Walter de Gruyter, 1995.
5. Aripov M., Bobokandov M., and Mamatkulova M. To numerical solution of the non-divergent diffusion equation in non-homogeneous medium with source or absorption. AIP Conference Proceedings, vol. 3085, no. 1. AIP Publishing, 2024.
6. Aripov M. and Bobokandov M. Large Time Asymptotes to the Cauchy Problem for Doubly Nonlinear Parabolic Equation with Variable Density and Absorption. International Mathematical Conference “Functional Analysis in Interdisciplinary Applications”, p. 22, 2023.
7. Chen, B., Mi. Y., Mu Ch., Global existence and nonexistence for a doubly degenerate parabolic system coupled via nonlinear boundary flux. Acta Mathematica Scientia, 2011, No. 31B(2), pages 681-693.
8. Deng, K., Levine, H.A., The role of critical exponents in blow-up theorems. The sequel J Math Anal Appl., 2000, No. 243, pages 85-126.
9. Galaktionov, V.A., Levine, H.A., On critical Fujita exponents for heat equations with nonlinear flux conditions on the boundary. Israel J Math, 1996, No. 94, pages 125-146.
10. Rakhmonov, Z.R., Tillaev, A.I., On the behavior of the solution of a nonlinear polytropic filtration problem with a source and multiple nonlinearities. Nanosystems: physics, chemistry, mathematics, 2018, No. 9(3) , p. 1-7.
11. Li, Z.P., Mu, C.L., Cui, Z.J., Critical curves for a fast diffusive polytropic filtration system coupled via nonlinear boundary flux. Z. angew Math. Phys., 2009, No. 60, pages 284-296.
12. Yongsheng, M., Chunlai, M., Botao Ch., Critical exponents for a doubly degenerate parabolic system coupled via nonlinear boundary flux. J. Korean Math, 2011, No. 3, Vol. 48, pages 513-527.
13. Aripov M., Bobokandov M. The Cauchy Problem for a Doubly Nonlinear Parabolic Equation with Variable Density and Nonlinear Time-Dependent Absorption. Journal of Mathematical Sciences 277, no. 3 (2023): 355-365.
14. Kalashnikov, A.S. Some problems of the qualitative theory of nonlinear degenerate parabolic equations of second order. Uspekhi Mat Nauk, 1987, 42, 135–176.
15. Aripov M. and Bobokandov M. Blow-up analysis for a doubly nonlinear parabolic non-divergence form equation with source term. Bulletin of the Institute of Mathematics 5 (2022): 7-21.
16. Aripov M., Bobokandov M. Asymptotic behavior of solutions for a doubly nonlinear parabolic non-divergence form equation with density. AIP Conference Proceedings, vol. 3004, no. 1. AIP Publishing, 2024.
17. Aripov M., Rakhmonov Z.R., and Alimov A.A. On the behaviors of solutions of a nonlinear diffusion system with a source and nonlinear boundary conditions. Bulletin of the Karaganda University. Mathematics series 113, no. 1 (2024): 28-45.
18. Rakhmonov Z.R. and Alimov A.A. Properties of solutions for a nonlinear diffusion problem with a gradient nonlinearity. International Journal of Applied Mathematics 36, no. 3 (2023): 405.
Yunusaliyevna, U. M. (2024). AYOLLAR GINEKOLOGIYASI, HAYZ SIKLI UNDAGI KASALLIKLARNI DAVOLASH USULLARI VA ULARNI DAVOLASHDAGI HOZIRGI ZAMON INNOVATSIYALARI. ОБРАЗОВАНИЕ НАУКА И ИННОВАЦИОННЫЕ ИДЕИ В МИРЕ, 44(7), 142-147.
Yunusaliyevna, U. M. (2024). THE PLACE AND ROLE OF TIMURID PRINCESSES IN THE SOCIO-POLITICAL AND CULTURAL LIFE OF THE COUNTRY. International Journal of Intellectual Cultural Heritage, 4(2), 58-66.
Umarova, M. (2023). TEMURIY MALIKA GAVHARSHODBEGIM TUGʻILGAN OILA VA UNING AMIR TEMUR DAVRIDAGI HAYOTI. Farg'ona davlat universiteti, (6), 70-70.
Усмонов, Б. А., & Умарова, М. (2022). XV АСР ЎРТАЛАРИДА ХУРОСОНДА ЮЗ БЕРГАН СИЁСИЙ ЖАРАЁНЛАРДА ГАВҲАРШОДБЕГИМНИНГ ТУТГАН ЎРНИ. IJTIMOIY FANLARDA INNOVASIYA ONLAYN ILMIY JURNALI, 2(10), 110-113.
Умарова, М. (2023). ГАВҲАРШОДБЕГИМ ТУҒИЛГАН ОИЛА ВА УНИНГ АМИР ТЕМУР ДАВРИДАГИ ҲАЁТИ. Interpretation and researches, 1(1).