DEEP LEARNING TEXNOLOGIYALARI VA ULARNING XAVFSIZLIKDAGI O‘RNI

Authors

  • Ulasheva Shaxlo Tagaevna Author
  • Xasanova Parizoda Nodir qizi Author
  • Yaxshimurodova Qutlubeka Hamza qizi Author
  • Maxmatqulova Nozima Qulmurot qizi Author
  • Boymuradova Rayxona Abdivasid qiz Author

Keywords:

Tahdidlarni aniqlash, AI, tarmoq xavfsizligi, zararli dasturlar, “qora quti” muammosi , deep learning.

Abstract

Ushbu maqolada sun’iy intellektning ilg‘or yo‘nalishlaridan biri bo‘lgan Deep Learning texnologiyalarining kiberxavfsizlik sohasidagi roli yoritilgan. Bugungi kunda kibertahdidlar tobora murakkablashib borayotgan bir paytda, an’anaviy himoya vositalari ba’zida yetarli bo‘lmay qolmoqda. Deep Learning algoritmlari esa katta hajmdagi ma’lumotlar orqali tahdidlarni aniqlash, anomal xatti-harakatlarni kuzatish va avtomatik himoya choralari ko‘rishda samarali yechim sifatida maydonga chiqmoqda. Maqolada ushbu texnologiyaning ishlash prinsipi, amaliy qo‘llanilishi, afzalliklari va mavjud cheklovlari tahlil qilinadi. Shuningdek, Deep Learning asosida yaratilgan real tizimlar misolida bu yondashuvning kiberxavfsizlikni ta’minlashdagi istiqbollari ko‘rib chiqiladi.

References

1. https://www.ibm.com/think/topics/deep-learning

2. https://www.ibm.com/think/topics/deep-learning#How+deep+learning+works

3. https://www.ibm.com/think/topics/deep-learning#Deep+learning+use+cases

4. Garfinkel, S. L., & Spafford, E. H. (2017). Malicious Cryptography: Exposing Cryptovirology. Wiley. ISBN: 9780471228276

• Zhou, Y., & Leung, V. C. M. (2017). Network Security Using Deep

5. Learning. Springer. ISBN: 9783319391866

Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). Why Should I Trust You? Explaining the Predictions of Any Classifier. KDD. Link

6. Zhang, Y., & Lee, C. (2018). Deep learning for network security: A survey. International Journal of Network Security, 20(2), 205-217.

7. Yasseri, S., & Behzad, M. (2019). A survey of machine learning approaches for network traffic anomaly detection. Journal of Computer Networks and Communications, 2019.

8. Sezer, S., & Akdemir, S. (2020). Artificial intelligence applications in network security. Journal of Electrical Engineering & Technology, 15(5), 2314-2325.

9. Ahmad, A., & Hu, H. (2019). A review of artificial intelligence applications in cybersecurity. Journal of Cybersecurity and Privacy, 1(1), 61-77.

10. Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). Why should I trust you? Explaining the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 1135-1144).

11. Chen, J., Song, L., & Choi, H. (2018). Towards interpretable deep learning for cybersecurity applications. Proceedings of the 17th International Symposium on Research in Attacks, Intrusions and Defenses (RAID).

Downloads

Published

2025-05-30